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Abstract—In coastal surveillance pulsed radar system,
employing a non-coherent receiver, the radar returns consist
of information received from the targets, along with unwanted
signals like receiver noise and clutter. In non-moving target
indicator (MTI) pulsed radars, the target information is in
the form of amplitude which depends on the radar cross
section (RCS) of the target. Practically it has been observed
that the amplitude statistics of the mean sea level decays
exponentially. Thus, target along with receiver noise follows
Gaussian distribution. In coastal surveillance scenario, the
clutter usually consists of returns from sea surface, rain, land,
etc. Hence, by employing the conventional constant false alarm
(CFAR) detectors, probability of false alarms will be more in
the scenarios like target presence along with clutter (sea spikes,
rain, etc). Usually, the probability distributions of the amplitude
returns from clutter will follow non-Gaussian models such as
Weibull, Log-normal, K-distribution, etc. But the reflection
from sea occurs due to many small scatterers having relative
motion with each other. They appear as discrete spikes, which
can interfere with the target reflection. Hence, the subtraction
of mean sea level amplitude from the amplitude of the radar
returns is not always sufficient to differentiate a target from
the sea clutter. The presence of discrete spikes increases the
skewness of the distribution. Thus, classifying the radar returns
by fitting it into Gaussian and non-Gaussian model can help
us to differentiate between returns consisting of only target
with noise, or target along with noise and clutter respectively.
In this paper we have proposed a method to find the rate of
convergence of the probability distribution function (PDF) by
computing the cumulative distribution function (CDF) on a
two dimensional radar data. It is shown that Extreme Value
Theory (EVT) can be used to approximate the tail of the
underlying clutter distribution. This method can be used to
identify the presence of clutter i.e. non-Gaussian model and
further EVT can be used to calculate the detection threshold
which is independent of the underlying distribution.

Keywords: pulsed radar, Gaussian and non-Gaussian model,
clutter distribution, Extreme Value Theory.

I. INTRODUCTION

In coastal surveillance scenario, sea clutter acts as a major
hindrance in detection of the targets. Sea clutter depends
on the various environmental factors like roughness of the
sea, wind speed, sea state, etc. Thus, sea clutter is a purely
random and stochastic process.
Practically, it has been observed that the radar returns

consisting only of target and receiver noise follows Gaussian
distribution. Radar returns consisting of sea clutter, rains, etc.
are generally non-Gaussian in nature. The commonly used
CFAR techniques are CA-CFAR, GO-CFAR, SO-CFAR, OS-
CFAR [1],[2]. These methods assumes the nature of the radar
clutter returns as Gaussian in nature. The performance of CA-
CFAR degrades as the environment becomes heterogeneous.
OS-CFAR works well in heterogeneous environment but its
efficiency degrades in homogeneous environment. Thus, these
CFAR detectors are application specific. But in real time
scenario, due to the presence of clutter the Gaussian nature
of the background environment consisting of sea clutter
changes. Understanding the non-Gaussian nature of the sea
clutter depends on the amplitude distribution of the radar
returns. Thus, there is a need to distinguish between Gaussian
and non-Gaussian radar returns and then adaptively set the
detection threshold based on the environmental conditions.
According to the Extreme Value Theory (EVT), the existing
tail of any distribution function can be modelled using
the generalized pareto distribution (GPD) [3]. Non-Gaussian
distribution for e.g. Rayleigh, Log-normal, Weibull distribution
have large tail in their probability distribution function, which
can be used to distinguish it from Gaussian distribution [4].
Thus, using the principles of Extreme Value Theory, the tail
of the radar clutter returns can be approximated to GPD and
hence, a distribution independent CFAR can be designed.

II. EXTREME VALUE THEORY

Extreme value theory states that as the number of samples
increases, the distribution of the maximum value of identically
independent random variables can be expressed as [5]:

H(x) =

{
1− e−(1+ξx)−1/ξ

ξ 6= 0, (1 + ξx) > 0
1− e−ex ξ = 0, x ∈ R

(1)

where ξ is the shape parameter.
If (1) holds, the conditional probability distribution FTg (x) =
P (X −Tg ≤ x | X > Tg) converges to GPD. The cumulative
distribution function of the GPD is defined by [6]:
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G(x | β, ξ) =
{

1− (1 + ξ xβ )
−1/ξ ξ 6= 0, (1 + ξ xβ) > 0

1− e−x/β ξ = 0, x ∈ R
(2)

where ξ is the same shape parameter as in (1), β is the scale
parameter, and Tg is the threshold chosen from the ordered
statistics (tail part of the probability density fucntion) of the
reference window. This can be used to model the tails of
distribution, i.e. for data exceeding certain threshold. It has
been observed that the distributions such as Weibull, Rayleigh,
Log normal, etc which have visible tail in their distribution can
be characterized by GPD.
As the value of ξ increases, the skewness of the tail increases.
Thus, this ξ can be used to distinguish between Gaussian and
non-Gaussian distribution [4].
Generally, targets have strong backscattering returns than the
clutter; thus, the targets have greater amplitude returns with
low probablity of occurence. Hence, targets contribute to the
tail part of the histogram [7]. Thus, this histogram or the
computed probability density function can be used for first
thresholding the ordered statistics of the CFAR window under
analysis.

III. CFAR DETECTOR AND ALGORITHM DESCRIPTION

This algorithm is based on two steps threshold calculation.
First step is the two-dimensional histogram analysis of the
amplitude returns of a particular area with respect to the
desired number of azimuth count pulse and range bins. This
analysis will give the tail part of the histogram. Second step is
the calculation of detection threshold based on the EVT CFAR
detector.

A. Computing first threshold based on the two dimensional
histogram analysis:

Choose a two dimensional window consisting of the N
number of cells. The non-zero samples are then used to
calculate the histogram or the probability density function.
The tail part of the computed density function of the radar
returns consists of target which are generally of low probability
of occurrence with high amplitude [7]. Let F be the cumulative
distribution function obtained from the probability density
function of the area under the analysis.

F (Tg) = φ (3)

where, Tg is the first local threshold and φ indicates the desired
percentage of data beyond which the probability of occurence
of target is high. Thus if φ is known, Tg can be found out
easily. Amplitude value of the radar returns smaller than the
Tg can easily be ignored. This threshold marks the beginning
of the tail, which we can fit into GPD function. Let the total
number of radar returns greater than the first threshold be M .
Thus, the tail probability is:

PTg = P (X > Tg) =M/N (4)

B. Computing second threshold based on the EVT:

The first threshold Tg must be much smaller than the
detection threshold to fit the GPD in the tail of the histogram.
The remaining M number of cells is used to approximate the
tail distribution; i.e. to fit the tail in G. To fit the curve in
GPD, take only the exceedances of the remaining samples
i.e. subtract the first threshold value from the remaining M
samples.

y(i) = x(i)− Tg ; i = 1...M (5)

Thus, y(i) represents the value of exceedances over the
threshold Tg , provided this threshold has been exceeded. These
exceedances value can be used to approximate the tail of the
distribution with GPD [8]:

FTg (y) = G(y | ξ, β) ; y = x− Tg (6)

The final detection threshold Td is such that:

α = P (X > Td) = PTg .Pw (7)

where Pw = P (y > w) = 1 − G(y | ξ, β) and α is the
probability of the value exceeding the detection threshold Td.
The parameters ξ and β of the GPD can be found out using
the maximum likelihood function. These parameter values are
used to calculate the final detection threshold, Td [9]:

Td = Tg +
β

ξ

[
(α
N

M
)−ξ − 1

]
(8)

Thus, this detection threshold, Td will keep on adapting
according to the changing environmental conditions, while
keeping α constant every time. The value of the cell under
test (CUT) is compared with Td. The decision is realized by
simple thresholding:

x =

{
Target x ≥ Td

No Target x < Td
(9)

where, x is the amplitude of CUT. Hence, this CFAR is
independent of the underlying clutter distribution. This method
takes in consideration only the tail part of the histogram of
the radar returns. So instead of processing whole data of the
window under consideration, this method censors most of the
data by histogram based first thresholding. In this way, the
total computational load reduces.

IV. RESULTS AND ANALYSIS

Based on the model discussed in the previous section,
few simulations were carried out on data consisting of target
and sea clutter radar returns. The data is obtained from a
commercial navigation S-band radar. It has a range resolution
of 35 meters. The operating frequency of the radar is 3050
MHz. It has 4096 azimuth count pulse with 25 rpm. It has
been observed that more the number of data cells under the
observation window the better is the performance of the CFAR
detector.
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A. Case 1: Analysis area having sea clutter and target

Fig.1 shows the polar plot of the radar data returns
consisting of sea clutter, cloud and targets. The top right of
the analysis area contains strong sea spikes. This is a case
of heterogeneous environment. Fig.2 shows the computed
density function of the analysis area marked in fig.1. Using
this density function, amplitude of data having cumulative
probability, φ as 0.70 has been taken as the first threshold,
Tg . The calculated value of Tg is 152. The data exceeding the
first threshold, Tg is used for the GPD parameter calculations.
The calculated values of ξ and β are 0.3718 and 25.2806
respectively. The value of ξ indicates the existence of heavy
tail. Thus, this is a non-Gaussian distributed model. Hence,
EVT is applicable here. Using (8), the calculated value of
detection threshold, Td is 193.7422.
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Fig. 1. Polar plot of radar returns with analysis area having sea clutter and
target.
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Fig. 2. Probability density function of the area marked in fig 1. The tail is
clearly visible.

Fig.3 shows the radar returns of fig.1 with suppressed
clutter after applying the detection threshold. With EVT CFAR
detector, the targets are retained. Sea clutter with strong spikes
and cloud are suppressed with few false alarms. We can

further reduce these false alarms with scan-to-scan correlation.
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Fig. 3. Polar plot of the radar returns of fig.1 after applying CFAR using
GPD.

Fig.4 shows A-scope of a particular range bin of the analysis
area of fig.1. Here, the receiver noise can be eliminated easily
using a hard threshold. The amplitude level above straight
line is the retained target using EVT CFAR. This method
eliminates the strong sea spikes. The dotted line shows the
threshold calculated using conventional CA CFAR of window
length 32. This method also retains the target. But it fails
in area where sea spikes are present. Here, the calculated
threshold is below the sea spikes. Hence, CA CFAR is prone
to false alarms in heterogeneous clutter environment.
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Fig. 4. Amplitude versus time in a particular range bin of the analysis area of
fig.1. The straight line shows the threshold, Td using EVT CFAR. The dotted
line shows the threshold calculated using CA CFAR.

B. Case 2: Analysis area having clutter and target with small
window length

Fig.5 shows polar plot with analysis area having target
and land clutter. As shown in fig.6, when this case is passed
through EVT CFAR detector, we can detect the target easily.
Since, the analysis area is having clutter like strong land patch,
it is difficult to fully suppress the clutter. Land clutter further
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breaks into small patch and can produce false alarms. Thus,
this can be considered as the drawback of the GPD.
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Fig. 5. Polar plot of radar returns with analysis area containing target and
land clutter.
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Fig. 6. Polar plot of the radar returns of fig.5 after applying CFAR using
GPD.

C. Case 3: Analysis area having clutter and target with large
window length

Fig.7 shows polar plot taking analysis area stretched all over.
Fig.8 shows the final scenario of fig.7 with suppressed clutter.
It has been observed that with this method we can retain
the targets. Since, the window length of the CFAR detector
is large, the presence of land clutter does not degrades the
performance as in case 2. Thus, larger the length of window
better is the performance of the EVT-CFAR detector.

V. CONCLUSION

The aforementioned method shows that GPD can be used to
approximate the tail of the underlying clutter distribution in a
sea clutter scenario, which can be used to distinguish between
Gaussian and non-Gaussian distributed models. Further, it can
be used to devise distribution independent CFAR detector. The
more the number of cells in the CFAR window, the better is
the effectiveness of this method. Thus, as shown this method
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Fig. 7. Polar plot of radar returns with analysis area spread over larger
distance.
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Fig. 8. Polar plot of the radar returns of fig.7 after applying CFAR using
GPD.

can be used more effectively as compared to CA-CFAR in
heterogeneous clutter scenario.
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